首页> 外文OA文献 >Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion
【2h】

Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion

机译:具有非线性的趋化 - 流体系统的全局非常弱的解   扩散

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the chemotaxis-fluid system\begin{align}\label{star}\tag{$\diamondsuit$} \left\{\begin{array}{r@{\,}c@{\,}c@{\ }l@{\quad}l@{\quad}l@{\,}c}n_{t}&+&u\cdot\!\nabla n&=\Delta n^m-\nabla\!\cdot(n\nabla c),\ &x\in\Omega,&t>0,\\ c_{t}&+&u\cdot\!\nabla c&=\Delta c-c+n,\ &x\in\Omega,& t>0,\\u_{t}&+&(u\cdot\nabla)u&=\Delta u+\nabla P+n\nabla\phi,\ &x\in\Omega,& t>0,\\&&\nabla\cdot u&=0,\ &x\in\Omega,& t>0, \end{array}\right. \end{align} in abounded domain $\Omega\subset\mathbb{R}^3$ with smooth boundary and $m>1$. Wewill introduce a notion of very weak solvability and prove that if$m>\frac{4}{3}$, then for any sufficiently regular nonnegative initial datathere exists at least one global very weak solution of a no-flux-Dirichletboundary value problem for \eqref{star}. Moreover, if $m>\frac{5}{3}$ weestablish the existence of at least one global weak solution in the standardsense. In our analysis we investigate a functional of the form $\int_{\Omega}\!n^{m-1}+\int_{\Omega}\! c^2$ to obtain a spatio-temporal $L^2$ estimate on$\nabla n^{m-1}$, which will be the starting point in deriving a series ofcompactness properties for a suitably regularized version of \eqref{star}. Asthe regularity information obtainable from these compactness results varydepending on the size of $m$, we will find that taking $m>\frac{5}{3}$ willyield sufficient regularity to pass to the limit in the integrals appearing inthe weak formulation, while for $m>\frac{4}{3}$ we have to rely on milderregularity requirements making only very weak solutions attainable.
机译:我们考虑趋化性流体系统\ begin {align} \ label {star} \ tag {$ \ diamondsuit $} \ left \ {\ begin {array} {r @ {\,} c @ {\,} c @ { \} l @ {\ quad} l @ {\ quad} l @ {\,} c} n_ {t}&+&u \ cdot \!\ nabla n&= \ Delta n ^ m- \ nabla \!\ cdot( n \ nabla c),\&x \ in \ Omega,&t> 0,\\ c_ {t}&+&u \ cdot \!\ nabla c&= \ Delta c-c + n,\&x \ in \ Omega,& t> 0,\\ u_ {t}&+&(u \ cdot \ nabla)u&= \ Delta u + \ nabla P + n \ nabla \ phi,\&x \ in \ Omega,&t> 0,\\ &&& \ nabla \ cdot u&= 0,\&x \ in \ Omega,&t> 0,\ end {array} \右。 \ end {align}在边界域$ \ Omega \ subset \ mathbb {R} ^ 3 $中,边界平滑且$ m> 1 $。我们将引入一个非常弱的可解性概念,并证明如果$ m> \ frac {4} {3} $,那么对于任何足够规则的非负初始数据,至少存在一个无通量-Dirichletboundary值问题的整体非常弱的解决方案\ eqref {star}。此外,如果$ m> \ frac {5} {3} $,我们将在标准感知中建立至少一个全局弱解的存在。在我们的分析中,我们研究了一种形式为$ \ int _ {\ Omega} \!n ^ {m-1} + \ int _ {\ Omega} \! c ^ 2 $以获得$ \ nabla n ^ {m-1} $的时空$ L ^ 2 $估算值,这将是为\ eqref {的适当正则化版本推导一系列紧实特性的起点星}。由于可从这些紧致性结果中获得的规则性信息随$ m $的大小而变化,因此我们发现,取$ m> \ frac {5} {3} $将产生足够的规则性,以传递到弱公式中出现的积分的极限,而对于$ m> \ frac {4} {3} $,我们必须依赖较温和的规则性要求,因此只能获得非常弱的解决方案。

著录项

  • 作者

    Black, Tobias;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号